Cardinal interpolation with polysplines on annuli
نویسندگان
چکیده
Cardinal polysplines of order p on annuli are functions in C2p−2 (Rn \ {0}) which are piecewise polyharmonic of order p such that ∆p−1S may have discontinuities on spheres in Rn, centered at the origin and having radii of the form ej , j ∈ Z. The main result is an interpolation theorem for cardinal polysplines where the data are given by sufficiently smooth functions on the spheres of radius ej and center 0 obeying a certain growth condition in |j|. This result can be considered as an analogue of the famous interpolation theorem of Schoenberg for cardinal splines.
منابع مشابه
On Positivity Properties of Fundamental Cardinal Polysplines
A b s t r a c t. Polysplines on strips of order p are natural generalizations of univariate splines. In [3] and [4] interpolation results for cardinal polysplines on strips have been proven. In this paper the following problems will be addressed: (i) positivity of the fundamental polyspline on the strip [−1, 1] × Rn, and (ii) uniqueness of interpolation for polynomially bounded cardinal polyspl...
متن کاملOn a new multivariate sampling paradigm and a polyspline Shannon function
In [9] and [12] we have introduced and studied a new paradigm for cardinal interpolation which is related to the theory of multivariate polysplines. In the present paper we show that this is related to a new sampling paradigm in the multivariate case, whereas we obtain a Shannon type function S (x) and the following Shannon type formula:
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملNummat Manuskript-nr. General Interpolation on the Lattice Hzz S : Compactly Supported Fundamental Solutions ?
the date of receipt and acceptance should be inserted later] Summary. In this paper we combine an earlier method developed with K. Jetter on general cardinal interpolation with constructions of compactly supported solutions for cardinal interpolation to gain compactly supported fundamental solutions for the general interpolation problem. The general interpolation problem admits the interpolatio...
متن کاملCardinal Hermite Spline Interpolation with Shifted Nodes
Generalized cardinal Hermite spline interpolation is considered. A special case of this problem is the classical cardinal Hermite spline interpolation with shifted nodes. By means of a corresponding symbol new representations of the cardinal Hermite fundamental splines can be given. Furthermore, a new efficient algorithm for the computation of the cardinal Hermite spline interpolant is obtained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 137 شماره
صفحات -
تاریخ انتشار 2005